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In order to study controlled motion of objects in the atmosphere, which 
travel under the influence of aerodynamic drag and gravity, a model 
problem is used to investigate the mechanism by which these forces 
affect the intensity of braking of the object in an exponential 
atmosphere. A time-optimal control is synthesized for objects whose 
aerodynamic drag may be characterizedexclusivelyas a force proportional 
to the product of the velocity of motion times the density of the 
atmosphere at the current altitude of motion, on the assumption that'the 
atmosphere is exponential. The control synthesis, represented in 
generalized coordinates V,p, is independent of the braking character- 
istic T of the object and the parameter k characterizing the variation 
of atmospheric density; it is determined solely by the magnitude of the 
generalized terminal stopping velocity vk and the values of Pmin/mar 1 
which are determined by the position of the boundaries of the phase 
constraint (PC). It is shown by a numerical experiment how one can 
simplify the optimal synthesis by introducing a certain control 
"significance" level. 

1. Statement of the problem. In connection with the control of motion in an exponential 
atmosphere (i.e. /l/, the density of the atmosphere varies exponentially with altitude Hz r = 
ro exp (---kH)), in a plane-parallel gravitational field, we shall consider the mechanism by 
which aerodynamic drag and the force of gravity affect the braking of an object. The model 
problem studied below may be given the following physical interpretation. 

In an inertial coordinate system (see Fig.1, in which XOZ is the plane of the local 
horizon and the Taxis points along the gravitational lines of force), an object P (the 
pursuer) moving at velocity V,, is approaching an object Z (the pursued object) which is 
moving at a velocity V,. Initially, the object P receives a starting impulse which imparts 
to it an initial velocity V,,. As it continues to move, its mass remains constant, but the 
direction of its velocity V, is modified by its control system, which ensures that the 
projections of V, and V, on a plane perpendicular to the line joining P and Z (called the 
range line, CPZ) remain equal to all times. The magnitude of V, decreases under the action 
of aerodynamic drag, whose magnitude mav be considered nrovortional to the vroduct r,,V,, 
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(where rl' is the density 
of the force of gravity on 

of the atmosphere at the moving altitude of P), and the projection 
the direction of the velocity vector. 

The object 2 is moving at a velocity V, of constant 
magnitude. The task of its control system is, by changing the 
direction of V2 (in an admissible range of angles r&,8,, see 
Fig.l), to decelerate P as rapidly as possible to the velocity 
v, 1 v:. 

The control law exerted by P on Z is known. 
Letting V, have an arbitrary direction in inertial space 

and denoting the various angles as in Fig.1, we can determine 
the orientation (the angle 'pp in the plane N) of V, relative 
to the range line (CPZ) and relative to the plane of the 
horizon (the angle On, not shown in Fig-l). The angles are: 

sir 8, = cos ((pp -I- rpF)sin eB 
Fig.1 

where the angle between the vector V, in the plane N and the range line is rp,; the plane N, 
which is determined by the range line and the vector V;, makes an angle Us with the plane of 
the horizon (the line AB is the intersection of these planes; the line CD on N and the line 
CE in the plane of the horizon are perpendicular to AB, and the angle between the range 
line and CD is Q). It follows from the above arguments that the vector V,, must lie in N; 
as to the object P, the magnitude of its velocity V, and its altitude-H, may be described 
by the following differential equations /l/z 

and pC Hmin < 11, Q HE,,,, where H,A and H,,, are the minimum and maximum admissible 
altitudes of motion of P, and g is the acceleration due to gravity. 

Instead of the last equation and the PC, we can consider equations for the density rp: 

To investigate the braking mechanism, it will suffice to define the controlled quantity 
as A = COS('~~ + cp,)sin Or, which may vary within a fixed range [Am{,,, Am,d containing zero. 
Defining 

u = A&, %I = max (I &d, A,,,) 

Um~max = AminlmaxlUo; V = ku,V,, Vr = ku,V:; p = Tr,; p, = 
&oZ 

(1.1) 

we obtain the following model optimal control problem for our investigation of the braking 
mechanism: 

mm,t~ (1.2) 
V’ = --pv - P&L, v (tr) = Vt; p’ = -pvu 

pmin < P S Pmar; Umin < U Q Umar (1.3) 

This problem meets the conditions under which the method described in /2/ can be used 
for control synthesis. It differs from the problems discussed in /2/ in that the right-hand 
sides of Eqs.tl.2) involve non-linear (bilinear) terms. We shall investigate it for the case 
PV>P,. Using the well-known formulae of the maximum principle /3/, we obtain: 

adjoint differential equations 

*1' = ($1 +O&) P7 %_' = ($1 -tw) v + IL; - Pz (4.4) 

where 

PL1' > 09 IL; (Pmin - P) = 0, Pa’ 2 0, PLa’ (P - Pm& = 0 (1.5) 

and an optimal control 

u"(t) = 
i 
&lm,~(t) = (-%P*-Pvgz)>U 
hn1n7 rI (t) < 0 W-3) 
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If t 2 t,, where t lies in a time interval in which u"(t)= u = conat. it follows 

immediately from (1.4) that 

(1.7) 

w4 

0.9) 

2. Optimat control for motion &thin the PC. It follows from the conditions of the 
maximum principle that the optimal control u”(t) will be a step function. 

Proposition. The optimal control u"(t) has at most one switching. 

Proof. It follows directly from (1.2), (1.4) that 

n. = -Q1 (P,P + pV*) +Q*P*JJ (3.1) 
if n'=o then n (I) = -Q* (ZP, + 1'2) (3.3) 

if II=0 then II' = l-Q1 (ZP, + VIP (3.3) 

and if Q1 (P) = Qz (t') = 0, then it follows from (1.8) and (1.9) that Q1(t)~Ql(t)~O,t>LC. 
We assert that the function n (t) has no further zeros for t>tn (n(4)= 0). Then 

necessarily 
Ql (k) Qa (I") < 0, 1% (GJ I > 1% (&I) I 

Suppose that at a time t,+, i.e., immediately after the switching, u"= 'I,,,~~. 
Only the following cases are possible: 

01+: Q1 (f") > 0, Q*(k) < 0, Q1 (tn+) +Qn (&L+) Urnax > 0 

03+: 111 (fn) < 0. Qz (&a) > 0, Q* (k+) + Qln (k+) umax < 0 

where the last inequalities follow from the conditions n(f,,)=O and pV>P,>O 
We shall use the relations (1.7)-(1.9). 

Case Ol+. The functions Q,,Q* are monotone increasing. By condition (2.1), before 
Qa (t) changes sign, necessarily K<O, and consequently when t > &I then n (t) cannot 
be positive. Consequently, under condition 01 + the control cannot switch to u'= urnaX. 

Case 02+. The functions QIVQz are monotone decreasing. By (2.1), before Q,(t) changes 
sign, necessarily rr>o, i.e., n(t)>O, and when t > &I it is monotone increasing. If n(t) 
experiences a new change of sign, then at the corresponding point t= t** necessarily 
II'(t**)<O. But it follows from (2.3) and the condition ~~(t**)< 0 that II(t**)>O. This con- 
tradiction proves that the function II(t) has no new zero. Thus, after the switching to 
D 
u = 'Lmax no further switching will occur. 

Suppose that at time t= t,,+, i.e., immediately after the switching, !A0 = U&&. The only 

possible cases are 01- and 02-, which are obtained from cases 01+ and 02+ by replacing umsX 

with umin. 

Case 01-. The functions Q+(t), Q%(t) are monotone increasing. By (2.1), before On (t) 
changes sign, necessarily n.<o and, consequently, n (1) cannot change sign. It is negative 
in this interval, and after 1(1%(f) changes sign it cannot change sign again. Hence there is 
no switching. 

Case 02-. The functions Q,(t). h(t) are monotone decreasing. By (2.1), before Qr 0) 
changes sign, necessarily rr.> 0. Consequently, after vanishing at t-= t,, the function n (t) 
must increase and cannot be negative again, i.e., under the conditions of case 02- no switching 
to U0 = I&," is possible. 

We have thus examined all possible cases of the optimal motion after switching has occurred. 
We have established that after the switching no second switching (change in the sign of II (i)) 
can occur. It follows that in the optimal motion there cannot be more than one switching 
within the PC. 

It follows from this proposition that the function rI(t), after reaching zero, will never 
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vanish again. 

3. Optima2 control for motion along the PC. Let us assume that the system, in the 
course of its optimal motion, reaches the left p = pmin of the PC. Arrival at the PC occurs 
when U' (t) : umaY, motion along the PC may take place (by (1.2)) only if u 0 and if pl' 1~. 0, 

& =- 0. At the time tf of arrival at the PC it must be true that 

II (tf-) ; 0, 11 Ur’) z 0; $1 (tf-) = $1 (Q+) 

$I2 (tt’) = qn (tf-) ‘- 1’ pl’d.r 
;,- 

and since 

If+ 

II (tf+) = n (t,-) - pv s pl’dr 
if- 

it follows that owing to the "jumpll of 11~' one can guarantee that II (tt’) = 0. The 
II (t) = 0 will hold in the interval tfQ t < t,, where t, is the time the system 
PC, provided that 

91 (4 = $1 (tf) &Ii” 

$2 (t) = 4% (tf-) + 43 6) v (tf)(t - tf) + 5 Pl’dT 

t/- 

Emin = ew {pmin (t - tf)} 

which gives 

n Ct) = - $5 (tf)(P2Emin + V (tr) f&inV (t - tf)} - 

92 (tf-) PIninll - pmin~ s lll’d7 

‘f- 

identity 
leaves the 

(3.1) 

Let us consider the possibility of ensuring that II(t)=0 in (3.1) by varying IL1' > 0. 
To that end the following equalities, which follow from (1.6), (3.1), must hold: 

(3.2) 

Hence 

---$I (2P, + V2) - vp; = 0 (3.3) 

It follows from this equality that at the time tf' of arrival at the PC necessarily 
n (tt’) = 0, and the condition $r (t)< 0 must hold in tf < t < t,; this does not contradict 
the optimum conditions listed above. 

For departure from the PC necessarily n (t,')< 0, which may be achieved thanks to the 
"jump" of pL1' > 0. 

Note that because II (t)= 0 along the PC, no further switching can occur after departure 
from the PC. 

Suppose that the system, moving in an optimum fashion, reaches the right p = pmax (pr'= 
0, IL; > 0). This may occur with u0 (t)= %ili, i.e., II( -_rP,P, - pVg,< 0. It is obvious 
from the adjoint differential equations that the necessary condition for motion along p = pmar, 
i.e., n (t)= 0, may be guaranteed by making 

$1 (4 = lcll (tf) Emax, -Lx = exp {P,,~ 0 - tf)} 

‘4’s 0) = ‘4’~ P-J + 9, Vt) V (t - td - i pz’d?, p*‘>O 
tt+ 

The equalities obtained from (3.2) by replacing PUlin with Pmar and pl' with (-ILZ') 
must hold on the PC. These equalities yield an expression analogous to (3.3), withP1'replaced 



This requires that at the time t,’ of arrival at the PC necessarily 
in the interval I$', t,-1 we must have VI(t)> 0, which does not contradict 
ditions listed above. 

n (t,‘) = 0, and 
the optimum con- 

For departure from the PC necessarily n(t,‘)> 0, which may always be achieved by a "jump" 
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of Pa' > 0. Note that since II (t)= 0 on the PC, no further switching is possible after 
departure from the PC. 

4. The structure of the optimal control. It has been established by an analysis of the 
optimality conditions that: the optimal control is a step function and it can have at most 
one switching; if the system hits the PC one must have no = 0 and with this control the system 
may halt at the constraint before the end of the control process; departure from the PC is 
possible, but there can be no further switchings within the PC. 

To estimate the sign of the optimal control with which the system starts its optimal 
motion, it is convenient to employ the following arguments: there can be at most one switching; 
over a finite part of the motion, from Vk + AV to Vk, provided AV is sufficiently small, 
the motion must proceed with a u0 value which minimizes the duration of the motion: 

mill 

Umin Q U < Umax 
AV 

-, i.e. 
pV+Par 

no= U,,, 

These arguments imply that if the optimal motion occurs with one switching (which is 
unique:), then it must begin with no = hi,,. There must exist a switching curve (SC) in the 
V, p plane, above which (with respect to the coordinate V) u0 = Urnin. the motion here may 
hit only the right PC, moving along it up to the SC and leaving it immediately after the phase 
point crosses the SC (this has been confirmed by numerical experiment: the duration of motion 
along the PC exceeds the duration of motion with u'= u,,,&. Below the SC the motion may hit 
only the left PC, subsequently moving along it until the control process ends. 

5. Investigating the properties of the optimal control. With an eye to the questions 
that arise in different physical interpretations of the model problem, we will present the 
results of a study bearing on the following questions: just how "significant" is the occurrence 
of a switching in the optimal control? If it is significant, how accurately must one then 
determine the SC? In what plane N (Fig.1) is the manoeuvring of the object Z most effective 
with respect to the criterion being studied? 

Our study of the SC and the properties of the optimal control will apply to the range 
P, = 0.0004. 0.0010, Vk = 0.01. 0.08, 1 ~mar,mi” I = I. 

5.1. Approximate description of the SC for large p and large V. In (V,p) coordinates, 
the SC has the form of a monotone decreasing concave curve (see the upper part of Fig.2, where 
the SC is shown for P,= 0.001 and a few values of Vk; the figures above the curves indicate 
values of in' Vr) with horizontal and vertical asymptotes. A change in Vk, while preserving 
the general shape of the SC, alters its position in the (V, P) plane. As vk iS increased 
the SC is "pulled up" along the V axis. 

Fig.2 

SC at ~30. Bellman's equation 
the SC to v= v,, which occurs with 

aw 
dl' (--V 

0. OS O.fB 

Fig.3 Fig.4 

for the minimum travel time o of the phase point from 
u" = +t, is 

-Pa)+&Vv)=l, lG(Vk' 0) = 0 (5.1) 
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and the following equality must hold on the SC: 

The equations of the characteristics of (5.1) and the assumption that near the SC V- 0 = 

L'l imply 
I - $1 = c,, (I) (Vk, p) = 0, C, = const 

+1$q =- 0 + Cz 

Eliminating the constants of integration C1,C, and using Eq.(5.2), we obtain the follow- 
ing approximate equation of the SC at p>O: 

N--pa - v V,-(V-P) -In~u “, ]i.($-v)-- “kc;2p) =O 
V-P 

(5.:)) 

The open circles in the upper part of Fig.2 show the results of a control comparison of 
the points of the approximate SC (5.3) with those of the true SC. The calculations, done with 
V, =-0.08,0.06,0.03, justify the use of (5.3) when p>o.i. 

The SC for V+Oo. As shown by numerical experiment, 
of V, and is satisfactorily described by the appropriate 
function pv = 10-s. It is shown in the upper part of Fig.2 
curve through the closed circles. 

this part of the SC is independent 
part of the SC for Vk =0.01 or the 
(toward the left) by the dash-dotted 

5.2. Estimation of the “significance” of the SC (the 
of switching in general will be measured by the following -. 

case without a PC). The desirability 
criterion: the difference in time 

between the duration iW of the control process without switching and the minimum possible 
time TO, i.e., the duration of the process with optimum switching time. 

Let us stipulate that the "significant" value of the difference is (TW- Tc)m= 1 sec. 
Then an optimal control will be considered significant only if (TW- T")>l sec. A synthesis 
of this control for P2= 0.001 is shown in the lower part of Fig.2. For each Vk value (shown 
by specifying lO*Vk alongside each SC) the figure shows only those parts of the SC along 
which one can obtain TW- TO> Isec.Outside this part of the SC,switching does not yield the 
expected savings in time. The dotted curve M in the lower part of Fig.2 (numerically calcu- 
1ated)represents the locus of the right endpoints of the "active" SCs. 

5.3. Approximate SC in the presence of a PC. The next question we consider is of import- 
ance if we wish to simplify the synthesis: assuming that the right PC is reached, can one 
simplify the rule for leaving it? To that end, let us compare the time required for the phase 
point, having hit the PC, to move along it until the control process ends, with the time 
required for it to move first along the PC and then, after leaving the latter, along a trajec- 
tory within the PC with uD= +1. 

A numerical experiment was used to estimate the time Tk for the system to move from the 
point at which the SC intersects the right PC p= pInax (the V coordinate of this point is V,-) 

to the end of the control process (sectors of the motion: along the PC, departure from it at 
v= v, and further motion along a path with P= i-l), as a function of the point VP of departure 
from the PC. It is obvious from Fig.3 (the figure above each curve in the Tk,V,, plane 
represents the appropriate ValUf? of 108Vk) that as the point of departure moves from r, = V-r 

to V, = V,O (the hatched ends of the curves) the time of motion Tk decreases monotonically; 
the rate of decrease inCreaSeS as vk decreases. At the same time one sees that if the optimum 
time can be determined to within 1 set, then the "accuracy" with which one can maintain the 
ordinate of the point of departure from the PC may be V,'- V,-0.02. Accuracy of this order 
is indeed provided by the above formula for the sector of the SC with ps0 (see the upper 
right part of Fig.3: the solid curve is the exact value of V,' as a function of V# and the 
dashed curve is the approximate curve obtained by formula (5.3); the results are shown for 

Vmax = 0.125). 
If one is satisfied with a control capable of guaranteeing a travel time differing from 

optimum by at most 1 set, then departure from the PC is justifiable only when Vk<O.OO. Other- 
wise the system can move after '.p" without leaving the PC. Thus, synthesis of an optimal 
control with significance level TW- T"= 1 set will look something like the situation in Fig.4. 
The dashed curves represent typical sections of optimal trajectories; the arrows represent 
the direction of motion of the phase point along them, the labels -1 and +l mark regions in 
which II" = __i and uo=+i, respectively, the upper part of the figure corresponds to Vk> 
0.02 and the lower part to V, Q 0.02. 



5.4. Optimal 9mnoeuvring plane” (Pig. I). The effect 
N (the change in the angle 6, is measured by the parameter 
process was verified at a point: the starting initial point 
terminal point Vta = 0.02. 

611 

of the inclination of the plane 
Pz) on the duration of the control 
v,, == 0.10 and the starting 

For a numerical comparison of the length T” of the control process one has to take into 
account conditions (1.11, from which it follows that, in order to keep the problem physically 
meaningful, the variation of P, from its starting value P,, to PI must be accompanied by 
changes in the starting value r,, and terminal value V, of the velocity V,,= V,,,~/p,/P,o; v, = 

l’ko fp,Ipw The results of the computations for P,, = 0.001, r;,,, = 0.1000, vkO = 0.0200. pa = 0.013 
were as follows: 

Pz. IO” 
l&O 

8 6 4 
l',,.iOZ 6.94 7.X 6.33 
v*.io* 2.660 1.788 1.550 1.266 
VJV* 5 4.994 
T” 31.89 34.29 357.56 22.35 

The row v*/I'k in the table serves as a control. The computations showed that the duration 
TO of the process increased monotonically as P, was reduced. Thus, to achieve maximally 
fast braking of the object P, the most preferable situation for Z is a vertical manoeuvring 
plane (the plane N with maximum Pz). 

6. Ccmctusicm. Considering a class of objects moving under the influence of an undesirable 
resistance force (proportional) to the velocity of the object and the density of the atmosphere 
at its altitude at any given time) and the force of gravity, we have been able to propose the 
synthesis of an optimal control ("optimal" in the sense of maximally fast braking; the control 
is implemented by adjusting the spatial orientation of the object's velocity vector) in 
generalized coordinates V = ku,V,, p = Tr, and with the parameter P, = gkuo2. 

The optimal control has at most one switching point within the phase constraints (there 
exists a switching curve (SC) in the V,p plane) and it steers the object at most once to the 
phase constraints. 

The position of the SC in the generalized coordinate plane V,p depends only on the 
generalized terminal velocity Vh- down to which the object is to be decelerated. For large 
V, p values, a good description of the SC is given by the analytical expressions obtained 
above. 

In the practical use of this synthesis technique, attention should be paid to the fact 
that for every fixed value of Vk and P, there is a {V,p} region in which one can drop 
a) the requirement that the control be switched at some time, or bl the requirement that the 
system leave the boundary of the right phase constraint, without significantly affecting the 
time elapsing until the completion of the control process (i.e., only part of the SC need 
actually be realized). 

With regard to the "physical problem" described at the beginning of the paper, we have 
shown that the best position of the manoeuvring plane from the standpoint of the object Z is 
the vertical plane. 

1. 
2. 

3. 
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